Isometric embeddings of Johnson graphs in Grassmann graphs
نویسنده
چکیده
Let V be an n-dimensional vector space (4 ≤ n < ∞) and let Gk(V ) be the Grassmannian formed by all k-dimensional subspaces of V . The corresponding Grassmann graph will be denoted by Γk(V ). We describe all isometric embeddings of Johnson graphs J (l,m), 1 < m < l − 1 in Γk(V ), 1 < k < n − 1 (Theorem 4). As a consequence, we get the following: the image of every isometric embedding of J (n, k) in Γk(V ) is an apartment of Gk(V ) if and only if n = 2k. Our second result (Theorem 5) is a classification of rigid isometric embeddings of Johnson graphs in Γk(V ), 1 < k < n− 1.
منابع مشابه
Isometric Embeddings of Half-Cube Graphs in Half-Spin Grassmannians
Let Π be a polar space of type Dn. Denote by Gδ(Π), δ ∈ {+,−} the associated half-spin Grassmannians and write Γδ(Π) for the corresponding half-spin Grassmann graphs. In the case when n ≥ 4 is even, the apartments of Gδ(Π) will be characterized as the images of isometric embeddings of the half-cube graph 1 2 Hn in Γδ(Π). As an application, we describe all isometric embeddings of Γδ(Π) in the ha...
متن کاملAccepted to Advances in Geometry CHARACTERIZATION OF ISOMETRIC EMBEDDINGS OF GRASSMANN GRAPHS
Let V be an n-dimensional left vector space over a division ring R. We write Gk(V ) for the Grassmannian formed by k-dimensional subspaces of V and denote by Γk(V ) the associated Grassmann graph. Let also V ′ be an n′-dimensional left vector space over a division ring R′. Isometric embeddings of Γk(V ) in Γk′ (V ′) are classified in [13]. A classification of J(n, k)-subsets in Gk′ (V ′), i.e. ...
متن کاملReciprocal Degree Distance of Grassmann Graphs
Recently, Hua et al. defined a new topological index based on degrees and inverse of distances between all pairs of vertices. They named this new graph invariant as reciprocal degree distance as 1 { , } ( ) ( ( ) ( ))[ ( , )] RDD(G) = u v V G d u d v d u v , where the d(u,v) denotes the distance between vertices u and v. In this paper, we compute this topological index for Grassmann graphs.
متن کاملOptimal Embeddings of Distance Transitive Graphs into Euclidean Spaces
In this paper we give an explicit formula for the least distortion embedding of a distance transitive graph into Euclidean space. We use this formula for finding least distortion embeddings for important examples: Hamming graphs, Johnson graphs, and Grassmann graphs. Our technique involves semidefinite programming and exploiting symmetry to simplify the optimization problem so that the question...
متن کاملLabeling Subgraph Embeddings and Cordiality of Graphs
Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$. For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011